Yoko Yamakata


2020

pdf bib
Visual Grounding Annotation of Recipe Flow Graph
Taichi Nishimura | Suzushi Tomori | Hayato Hashimoto | Atsushi Hashimoto | Yoko Yamakata | Jun Harashima | Yoshitaka Ushiku | Shinsuke Mori
Proceedings of The 12th Language Resources and Evaluation Conference

In this paper, we provide a dataset that gives visual grounding annotations to recipe flow graphs. A recipe flow graph is a representation of the cooking workflow, which is designed with the aim of understanding the workflow from natural language processing. Such a workflow will increase its value when grounded to real-world activities, and visual grounding is a way to do so. Visual grounding is provided as bounding boxes to image sequences of recipes, and each bounding box is linked to an element of the workflow. Because the workflows are also linked to the text, this annotation gives visual grounding with workflow’s contextual information between procedural text and visual observation in an indirect manner. We subsidiarily annotated two types of event attributes with each bounding box: “doing-the-action,” or “done-the-action”. As a result of the annotation, we got 2,300 bounding boxes in 272 flow graph recipes. Various experiments showed that the proposed dataset enables us to estimate contextual information described in recipe flow graphs from an image sequence.

pdf bib
English Recipe Flow Graph Corpus
Yoko Yamakata | Shinsuke Mori | John Carroll
Proceedings of The 12th Language Resources and Evaluation Conference

We present an annotated corpus of English cooking recipe procedures, and describe and evaluate computational methods for learning these annotations. The corpus consists of 300 recipes written by members of the public, which we have annotated with domain-specific linguistic and semantic structure. Each recipe is annotated with (1) ‘recipe named entities’ (r-NEs) specific to the recipe domain, and (2) a flow graph representing in detail the sequencing of steps, and interactions between cooking tools, food ingredients and the products of intermediate steps. For these two kinds of annotations, inter-annotator agreement ranges from 82.3 to 90.5 F1, indicating that our annotation scheme is appropriate and consistent. We experiment with producing these annotations automatically. For r-NE tagging we train a deep neural network NER tool; to compute flow graphs we train a dependency-style parsing procedure which we apply to the entire sequence of r-NEs in a recipe.In evaluations, our systems achieve 71.1 to 87.5 F1, demonstrating that our annotation scheme is learnable.