Sarthak Jain


2020

pdf bib
ERASER: A Benchmark to Evaluate Rationalized NLP Models
Jay DeYoung | Sarthak Jain | Nazneen Fatema Rajani | Eric Lehman | Caiming Xiong | Richard Socher | Byron C. Wallace
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

State-of-the-art models in NLP are now predominantly based on deep neural networks that are opaque in terms of how they come to make predictions. This limitation has increased interest in designing more interpretable deep models for NLP that reveal the ‘reasoning’ behind model outputs. But work in this direction has been conducted on different datasets and tasks with correspondingly unique aims and metrics; this makes it difficult to track progress. We propose the Evaluating Rationales And Simple English Reasoning (ERASER a benchmark to advance research on interpretable models in NLP. This benchmark comprises multiple datasets and tasks for which human annotations of “rationales” (supporting evidence) have been collected. We propose several metrics that aim to capture how well the rationales provided by models align with human rationales, and also how faithful these rationales are (i.e., the degree to which provided rationales influenced the corresponding predictions). Our hope is that releasing this benchmark facilitates progress on designing more interpretable NLP systems. The benchmark, code, and documentation are available at https://www.eraserbenchmark.com/

pdf bib
Learning to Faithfully Rationalize by Construction
Sarthak Jain | Sarah Wiegreffe | Yuval Pinter | Byron C. Wallace
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In many settings it is important for one to be able to understand why a model made a particular prediction. In NLP this often entails extracting snippets of an input text ‘responsible for’ corresponding model output; when such a snippet comprises tokens that indeed informed the model’s prediction, it is a faithful explanation. In some settings, faithfulness may be critical to ensure transparency. Lei et al. (2016) proposed a model to produce faithful rationales for neural text classification by defining independent snippet extraction and prediction modules. However, the discrete selection over input tokens performed by this method complicates training, leading to high variance and requiring careful hyperparameter tuning. We propose a simpler variant of this approach that provides faithful explanations by construction. In our scheme, named FRESH, arbitrary feature importance scores (e.g., gradients from a trained model) are used to induce binary labels over token inputs, which an extractor can be trained to predict. An independent classifier module is then trained exclusively on snippets provided by the extractor; these snippets thus constitute faithful explanations, even if the classifier is arbitrarily complex. In both automatic and manual evaluations we find that variants of this simple framework yield predictive performance superior to ‘end-to-end’ approaches, while being more general and easier to train. Code is available at https://github.com/successar/FRESH.

pdf bib
SciREX: A Challenge Dataset for Document-Level Information Extraction
Sarthak Jain | Madeleine van Zuylen | Hannaneh Hajishirzi | Iz Beltagy
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Extracting information from full documents is an important problem in many domains, but most previous work focus on identifying relationships within a sentence or a paragraph. It is challenging to create a large-scale information extraction (IE) dataset at the document level since it requires an understanding of the whole document to annotate entities and their document-level relationships that usually span beyond sentences or even sections. In this paper, we introduce SciREX, a document level IE dataset that encompasses multiple IE tasks, including salient entity identification and document level N-ary relation identification from scientific articles. We annotate our dataset by integrating automatic and human annotations, leveraging existing scientific knowledge resources. We develop a neural model as a strong baseline that extends previous state-of-the-art IE models to document-level IE. Analyzing the model performance shows a significant gap between human performance and current baselines, inviting the community to use our dataset as a challenge to develop document-level IE models. Our data and code are publicly available at https://github.com/allenai/SciREX .

pdf bib
SUPP.AI: finding evidence for supplement-drug interactions
Lucy Wang | Oyvind Tafjord | Arman Cohan | Sarthak Jain | Sam Skjonsberg | Carissa Schoenick | Nick Botner | Waleed Ammar
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Dietary supplements are used by a large portion of the population, but information on their pharmacologic interactions is incomplete. To address this challenge, we present SUPP.AI, an application for browsing evidence of supplement-drug interactions (SDIs) extracted from the biomedical literature. We train a model to automatically extract supplement information and identify such interactions from the scientific literature. To address the lack of labeled data for SDI identification, we use labels of the closely related task of identifying drug-drug interactions (DDIs) for supervision. We fine-tune the contextualized word representations of the RoBERTa language model using labeled DDI data, and apply the fine-tuned model to identify supplement interactions. We extract 195k evidence sentences from 22M articles (P=0.82, R=0.58, F1=0.68) for 60k interactions. We create the SUPP.AI application for users to search evidence sentences extracted by our model. SUPP.AI is an attempt to close the information gap on dietary supplements by making up-to-date evidence on SDIs more discoverable for researchers, clinicians, and consumers. An informational video on how to use SUPP.AI is available at: https://youtu.be/dR0ucKdORwc