Mans Hulden


2020

pdf bib
UniMorph 3.0: Universal Morphology
Arya D. McCarthy | Christo Kirov | Matteo Grella | Amrit Nidhi | Patrick Xia | Kyle Gorman | Ekaterina Vylomova | Sabrina J. Mielke | Garrett Nicolai | Miikka Silfverberg | Timofey Arkhangelskiy | Nataly Krizhanovsky | Andrew Krizhanovsky | Elena Klyachko | Alexey Sorokin | John Mansfield | Valts Ernštreits | Yuval Pinter | Cassandra L. Jacobs | Ryan Cotterell | Mans Hulden | David Yarowsky
Proceedings of The 12th Language Resources and Evaluation Conference

The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological paradigms for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation and a type-level resource of annotated data in diverse languages realizing that schema. We have implemented several improvements to the extraction pipeline which creates most of our data, so that it is both more complete and more correct. We have added 66 new languages, as well as new parts of speech for 12 languages. We have also amended the schema in several ways. Finally, we present three new community tools: two to validate data for resource creators, and one to make morphological data available from the command line. UniMorph is based at the Center for Language and Speech Processing (CLSP) at Johns Hopkins University in Baltimore, Maryland. This paper details advances made to the schema, tooling, and dissemination of project resources since the UniMorph 2.0 release described at LREC 2018.

pdf bib
SIGMORPHON 2020 Shared Task 0: Typologically Diverse Morphological Inflection
Ekaterina Vylomova | Jennifer White | Elizabeth Salesky | Sabrina J. Mielke | Shijie Wu | Edoardo Maria Ponti | Rowan Hall Maudslay | Ran Zmigrod | Josef Valvoda | Svetlana Toldova | Francis Tyers | Elena Klyachko | Ilya Yegorov | Natalia Krizhanovsky | Paula Czarnowska | Irene Nikkarinen | Andrew Krizhanovsky | Tiago Pimentel | Lucas Torroba Hennigen | Christo Kirov | Garrett Nicolai | Adina Williams | Antonios Anastasopoulos | Hilaria Cruz | Eleanor Chodroff | Ryan Cotterell | Miikka Silfverberg | Mans Hulden
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

A broad goal in natural language processing (NLP) is to develop a system that has the capacity to process any natural language. Most systems, however, are developed using data from just one language such as English. The SIGMORPHON 2020 shared task on morphological reinflection aims to investigate systems’ ability to generalize across typologically distinct languages, many of which are low resource. Systems were developed using data from 45 languages and just 5 language families, fine-tuned with data from an additional 45 languages and 10 language families (13 in total), and evaluated on all 90 languages. A total of 22 systems (19 neural) from 10 teams were submitted to the task. All four winning systems were neural (two monolingual transformers and two massively multilingual RNN-based models with gated attention). Most teams demonstrate utility of data hallucination and augmentation, ensembles, and multilingual training for low-resource languages. Non-neural learners and manually designed grammars showed competitive and even superior performance on some languages (such as Ingrian, Tajik, Tagalog, Zarma, Lingala), especially with very limited data. Some language families (Afro-Asiatic, Niger-Congo, Turkic) were relatively easy for most systems and achieved over 90% mean accuracy while others were more challenging.

pdf bib
The SIGMORPHON 2020 Shared Task on Unsupervised Morphological Paradigm Completion
Katharina Kann | Arya D. McCarthy | Garrett Nicolai | Mans Hulden
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

In this paper, we describe the findings of the SIGMORPHON 2020 shared task on unsupervised morphological paradigm completion (SIGMORPHON 2020 Task 2), a novel task in the field of inflectional morphology. Participants were asked to submit systems which take raw text and a list of lemmas as input, and output all inflected forms, i.e., the entire morphological paradigm, of each lemma. In order to simulate a realistic use case, we first released data for 5 development languages. However, systems were officially evaluated on 9 surprise languages, which were only revealed a few days before the submission deadline. We provided a modular baseline system, which is a pipeline of 4 components. 3 teams submitted a total of 7 systems, but, surprisingly, none of the submitted systems was able to improve over the baseline on average over all 9 test languages. Only on 3 languages did a submitted system obtain the best results. This shows that unsupervised morphological paradigm completion is still largely unsolved. We present an analysis here, so that this shared task will ground further research on the topic.

pdf bib
Leveraging Principal Parts for Morphological Inflection
Ling Liu | Mans Hulden
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper presents the submission by the CU Ling team from the University of Colorado to SIGMORPHON 2020 shared task 0 on morphological inflection. The task is to generate the target inflected word form given a lemma form and a target morphosyntactic description. Our system uses the Transformer architecture. Our overall approach is to treat the morphological inflection task as a paradigm cell filling problem and to design the system to leverage principal parts information for better morphological inflection when the training data is limited. We train one model for each language separately without external data. The overall average performance of our submission ranks the first in both average accuracy and Levenshtein distance from the gold inflection among all submissions including those using external resources.

pdf bib
Linguist vs. Machine: Rapid Development of Finite-State Morphological Grammars
Sarah Beemer | Zak Boston | April Bukoski | Daniel Chen | Princess Dickens | Andrew Gerlach | Torin Hopkins | Parth Anand Jawale | Chris Koski | Akanksha Malhotra | Piyush Mishra | Saliha Muradoglu | Lan Sang | Tyler Short | Sagarika Shreevastava | Elizabeth Spaulding | Testumichi Umada | Beilei Xiang | Changbing Yang | Mans Hulden
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

Sequence-to-sequence models have proven to be highly successful in learning morphological inflection from examples as the series of SIGMORPHON/CoNLL shared tasks have shown. It is usually assumed, however, that a linguist working with inflectional examples could in principle develop a gold standard-level morphological analyzer and generator that would surpass a trained neural network model in accuracy of predictions, but that it may require significant amounts of human labor. In this paper, we discuss an experiment where a group of people with some linguistic training develop 25+ grammars as part of the shared task and weigh the cost/benefit ratio of developing grammars by hand. We also present tools that can help linguists triage difficult complex morphophonological phenomena within a language and hypothesize inflectional class membership. We conclude that a significant development effort by trained linguists to analyze and model morphophonological patterns are required in order to surpass the accuracy of neural models.

pdf bib
Data Augmentation for Transformer-based G2P
Zach Ryan | Mans Hulden
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

The Transformer model has been shown to outperform other neural seq2seq models in several character-level tasks. It is unclear, however, if the Transformer would benefit as much as other seq2seq models from data augmentation strategies in the low-resource setting. In this paper we explore strategies for data augmentation in the g2p task together with the Transformer model. Our results show that a relatively simple alignment-based strategy of identifying consistent input-output subsequences in grapheme-phoneme data coupled together with a subsequent splicing together of such pieces to generate hallucinated data works well in the low-resource setting, often delivering substantial performance improvement over a standard Transformer model.