Cristina España-Bonet


2020

pdf bib
Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of Yorùbá and Twi
Jesujoba Alabi | Kwabena Amponsah-Kaakyire | David Adelani | Cristina España-Bonet
Proceedings of The 12th Language Resources and Evaluation Conference

The success of several architectures to learn semantic representations from unannotated text and the availability of these kind of texts in online multilingual resources such as Wikipedia has facilitated the massive and automatic creation of resources for multiple languages. The evaluation of such resources is usually done for the high-resourced languages, where one has a smorgasbord of tasks and test sets to evaluate on. For low-resourced languages, the evaluation is more difficult and normally ignored, with the hope that the impressive capability of deep learning architectures to learn (multilingual) representations in the high-resourced setting holds in the low-resourced setting too. In this paper we focus on two African languages, Yorùbá and Twi, and compare the word embeddings obtained in this way, with word embeddings obtained from curated corpora and a language-dependent processing. We analyse the noise in the publicly available corpora, collect high quality and noisy data for the two languages and quantify the improvements that depend not only on the amount of data but on the quality too. We also use different architectures that learn word representations both from surface forms and characters to further exploit all the available information which showed to be important for these languages. For the evaluation, we manually translate the wordsim-353 word pairs dataset from English into Yorùbá and Twi. We extend the analysis to contextual word embeddings and evaluate multilingual BERT on a named entity recognition task. For this, we annotate with named entities the Global Voices corpus for Yorùbá. As output of the work, we provide corpora, embeddings and the test suits for both languages.

pdf bib
GeBioToolkit: Automatic Extraction of Gender-Balanced Multilingual Corpus of Wikipedia Biographies
Marta R. Costa-jussà | Pau Li Lin | Cristina España-Bonet
Proceedings of The 12th Language Resources and Evaluation Conference

We introduce GeBioToolkit, a tool for extracting multilingual parallel corpora at sentence level, with document and gender information from Wikipedia biographies. Despite the gender inequalities present in Wikipedia, the toolkit has been designed to extract corpus balanced in gender. While our toolkit is customizable to any number of languages (and different domains), in this work we present a corpus of 2,000 sentences in English, Spanish and Catalan, which has been post-edited by native speakers to become a high-quality dataset for machine translation evaluation. While GeBioCorpus aims at being one of the first non-synthetic gender-balanced test datasets, GeBioToolkit aims at paving the path to standardize procedures to produce gender-balanced datasets.

pdf bib
How Human is Machine Translationese? Comparing Human and Machine Translations of Text and Speech
Yuri Bizzoni | Tom S Juzek | Cristina España-Bonet | Koel Dutta Chowdhury | Josef van Genabith | Elke Teich
Proceedings of the 17th International Conference on Spoken Language Translation

Translationese is a phenomenon present in human translations, simultaneous interpreting, and even machine translations. Some translationese features tend to appear in simultaneous interpreting with higher frequency than in human text translation, but the reasons for this are unclear. This study analyzes translationese patterns in translation, interpreting, and machine translation outputs in order to explore possible reasons. In our analysis we – (i) detail two non-invasive ways of detecting translationese and (ii) compare translationese across human and machine translations from text and speech. We find that machine translation shows traces of translationese, but does not reproduce the patterns found in human translation, offering support to the hypothesis that such patterns are due to the model (human vs machine) rather than to the data (written vs spoken).