André Freitas

Also published as: Andre Freitas


2020

pdf bib
Premise Selection in Natural Language Mathematical Texts
Deborah Ferreira | André Freitas
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The discovery of supporting evidence for addressing complex mathematical problems is a semantically challenging task, which is still unexplored in the field of natural language processing for mathematical text. The natural language premise selection task consists in using conjectures written in both natural language and mathematical formulae to recommend premises that most likely will be useful to prove a particular statement. We propose an approach to solve this task as a link prediction problem, using Deep Convolutional Graph Neural Networks. This paper also analyses how different baselines perform in this task and shows that a graph structure can provide higher F1-score, especially when considering multi-hop premise selection.

pdf bib
Natural Language Premise Selection: Finding Supporting Statements for Mathematical Text
Deborah Ferreira | André Freitas
Proceedings of The 12th Language Resources and Evaluation Conference

Mathematical text is written using a combination of words and mathematical expressions. This combination, along with a specific way of structuring sentences makes it challenging for state-of-art NLP tools to understand and reason on top of mathematical discourse. In this work, we propose a new NLP task, the natural premise selection, which is used to retrieve supporting definitions and supporting propositions that are useful for generating an informal mathematical proof for a particular statement. We also make available a dataset, NL-PS, which can be used to evaluate different approaches for the natural premise selection task. Using different baselines, we demonstrate the underlying interpretation challenges associated with the task.

pdf bib
A Framework for Evaluation of Machine Reading Comprehension Gold Standards
Viktor Schlegel | Marco Valentino | Andre Freitas | Goran Nenadic | Riza Batista-Navarro
Proceedings of The 12th Language Resources and Evaluation Conference

Machine Reading Comprehension (MRC) is the task of answering a question over a paragraph of text. While neural MRC systems gain popularity and achieve noticeable performance, issues are being raised with the methodology used to establish their performance, particularly concerning the data design of gold standards that are used to evaluate them. There is but a limited understanding of the challenges present in this data, which makes it hard to draw comparisons and formulate reliable hypotheses. As a first step towards alleviating the problem, this paper proposes a unifying framework to systematically investigate the present linguistic features, required reasoning and background knowledge and factual correctness on one hand, and the presence of lexical cues as a lower bound for the requirement of understanding on the other hand. We propose a qualitative annotation schema for the first and a set of approximative metrics for the latter. In a first application of the framework, we analyse modern MRC gold standards and present our findings: the absence of features that contribute towards lexical ambiguity, the varying factual correctness of the expected answers and the presence of lexical cues, all of which potentially lower the reading comprehension complexity and quality of the evaluation data.